Expression of neural cell adhesion molecule (N-CAM) in rat islets and its role in islet cell type segregation.
نویسندگان
چکیده
Endocrine cell types are non-randomly distributed within pancreatic islets of Langerhans. In the rat, insulin-secreting B-cells occupy the core of the islets and are surrounded by A-, D- and PP-cells, secreting glucagon, somatostatin and pancreatic polypeptide, respectively. Furthermore, dissociated islet cells have the ability in vitro to form aggregates with the same cell-type organization as native islets (pseudoislets). These observations suggest that a differential expression of cell adhesion molecules (CAMs) might characterize B- and non-B-cells (A-, D- and PP-cells), and be in part responsible for the establishment and maintenance of islet architecture. Indirect immunofluorescence using antibodies against CAMs and islet hormones was performed on serial sections of the splenic and duodenal parts of the rat pancreas. Staining for the Ca(2+)-dependent CAM E-cadherin was detected on both exocrine and endocrine tissue and was uniform over the entire islet section, in both pancreatic regions. By contrast, staining for the Ca(2+)-independent neural CAM (N-CAM) was restricted to endocrine tissue and nerve endings. Furthermore, N-CAM staining of endocrine cells was stronger in the islet periphery, a region composed mostly of non-B-cells. Serial sections demonstrate that cells staining strongly for N-CAM in the splenic part correspond to glucagon cells and in the duodenal part to pancreatic polypeptide cells. Within pseudoislets in vitro a stronger staining for N-CAM was also observed on peripheral cells, corresponding to non-B-cells.
منابع مشابه
Neural Cell Adhesion Molecule (N-CAM) Is Required for Cell Type Segregation and Normal Ultrastructure in Pancreatic Islets
Classical cell dissociation/reaggregation experiments with embryonic tissue and cultured cells have established that cellular cohesiveness, mediated by cell adhesion molecules, is important in determining the organization of cells within tissue and organs. We have employed N-CAM-deficient mice to determine whether N-CAM plays a functional role in the proper segregation of cells during the devel...
متن کاملCo-Transplantation of VEGF-Expressing Human Embryonic Stem Cell Derived Mesenchymal Stem Cells to Enhance Islet Revascularization in Diabetic Nude Mice
Background: Pancreatic islet transplantation has emerged as a promising treatment for type I diabetes. However, its efficacy is severely hampered due to poor islet engraftment and revascularization, which have been resulted to partially loss of transplanted islets. It has been shown that local delivery of vascular endothelial growth factor (VEGF) could accelerate transplanted islet revasculari...
متن کاملSalvianolic acid B improves insulin secretion from interleukin 1β-treated rat pancreatic islets: The role of PI3K-Akt signaling
Background and Objective: Oxidative stress induced by proinflammatory cytokines such as IL-1β plays a major role in β-cell destruction in diabetes type 1. Salvianolic acid B (Sal B) is a polyphenolic compound with antioxidant and protective effects. Thus, objective of this study was to assess the protection exerted by Sal B on isolated rat islets exposed to IL-1β and to investigate an underlyin...
متن کاملThe effect of ghrelin on Kiss-1 and KissR gene transcription and insulin secretion in rat islets of Langerhans and CRI-D2 cell line
Objective(s): Ghrelin is a peptide hormone that has been shown to have numerous central and peripheral effects. The central effects including GH secretion, food intake, and energy homeostasis are partly mediated by Kiss1- KissR signaling pathway. Ghrelin and its receptor are also expressed in the pancreatic islets. Ghrelin is one of the key metabolic factors controlling insulin secretion from t...
متن کاملKSA Antigen Ep-CAM Mediates Cell–Cell Adhesion of Pancreatic Epithelial Cells: Morphoregulatory Roles in Pancreatic Islet Development
Cell adhesion molecules (CAMs) are important mediators of cell-cell interactions and regulate cell fate determination by influencing growth, differentiation, and organization within tissues. The human pancarcinoma antigen KSA is a glycoprotein of 40 kD originally identified as a marker of rapidly proliferating tumors of epithelial origin. Interestingly, most normal epithelia also express this a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 107 ( Pt 6) شماره
صفحات -
تاریخ انتشار 1994